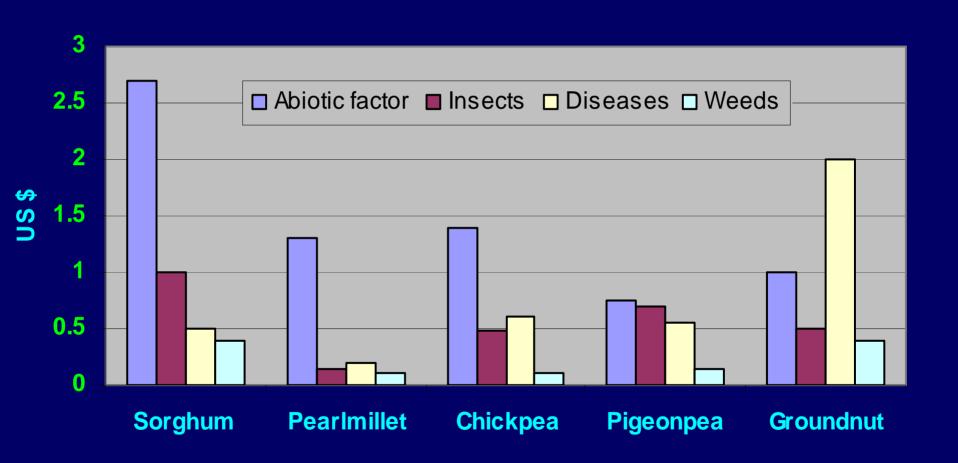
Genetic Engineering for Enhancing Abiotic Stress Tolerance: Water Use Efficiency and Nitrogen Use Efficiency


K. C. Bansal

National Research Centre on Plant Biotechnology Indian Agricultural Research Institute New Delhi – 110 012 kailashbansal@hotmail.com

Which Trait(s) after Bt or Herbicide Resistance?

- Water Use Efficiency/Abiotic Stress Tolerance
- Nutrient Use Efficiency
- Nutritional Quality/ Edible Vaccines
- Disease Resistance: Virus resistance
- Yield and Yield Components

Loss due to Abiotic Factors, Insects, Diseases and Weeds

Source: ICRISAT, India 1992

Indian Agriculture is Dependent on Monsoon

Deficient

-20% to -59%)

-60% to -99%)

Normal

(+20% or more)

(+19% to -19%)

Total food grain production in India

Year	Production (mt)
2001	209
2002	185

Source: Economic Review (2003)

BUSINESS TIMES

The Times of India, New Delhi, Thursday, November 7, 2002

e barking robot

y Sanyo and robotics venture tmsuk, can transmit video images to a mobile phone, detect fire and bark against dubious people

"Capital inadequacy and a high level of NPAs led the century-old private bank into a severe financial crisis forcing the Centre to put it under moratorium."

JR Prabhu, chairman, Nedungadi Bar

Mustard output to fall

Production of mustard oilseeds may fall this year due to drought in Rajasthan, which accounts for 65 per cent of rabi output, leading to larger edible oil imports SEC

SEC Pitt, fire corp scal on 1

Mustard output to fall

Production of mustard oilseeds may fall this year due to drought in Rajasthan, which accounts for 65% of rabi output, leading to larger edible oil imports

November 7, 2002

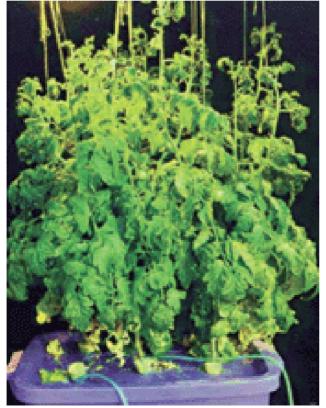
Biotechnological Strategies to increase input use efficiency

- Marker assisted breeding
- > Transgenic development
- > Genomics, proteomics
- > TILLING/EcoTILLING
- Search for new genes

GENES FOR ABIOTIC STRESS TOLERANCE

International Effort

Gene/QTL	Tolerance
HARDY gene	Drought
Sub1 (QTL)	Submergence tolerance
OsDREB1A	Drought, high-salt and low- temperature stresses
otsA and otsB - trehalose biosynthesis	Drought and/or salinity
CBF1	Salinity, drought and chilling
HSFs	Heat stress
SNAC1	Drought resistance and salt tolerance
OsCOIN	Chilling, salt and drought, and enhanced proline levels
ABF3	Drought and cold

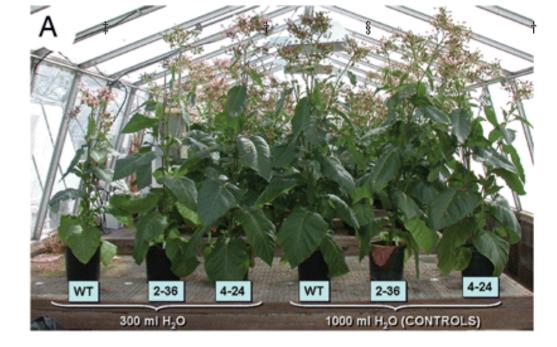

New Ways to Protect Drought-Stricken Plants

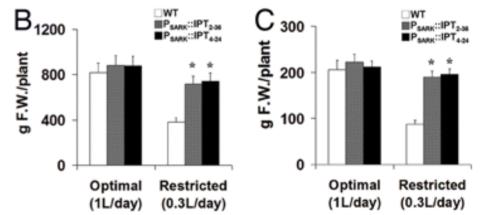
Anne Simon Moffat. Science 296:1226-1229, May 17 2002.

With drought an ever-present threat, researchers are identifying genes that can help plants tolerate arid conditions in hopes of using them to produce hardier crops.

Tomato plants carrying a foreign gene that protects their cells from salt-induced dehydration thrive in a 200-mM salt solution, whereas unaltered plants wither.

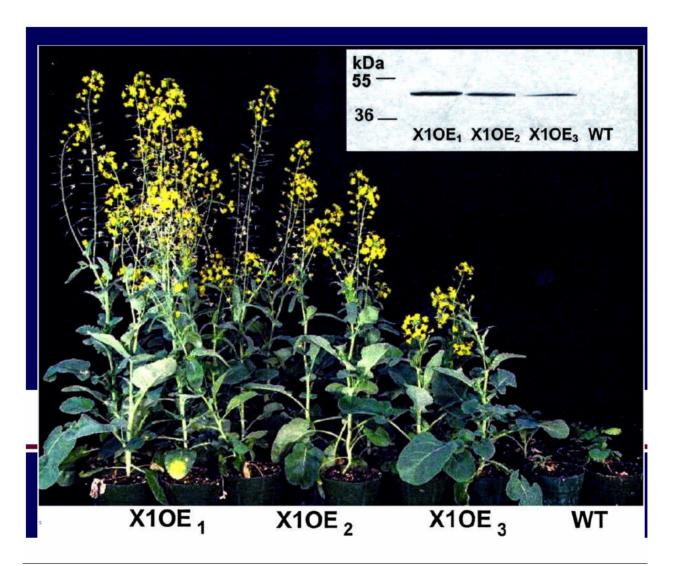
SOURCE: ED BLUMWALD/UNIVERSITY OF CALIFORNIA, DAVIS


Transgenic Tomato



Wild Type

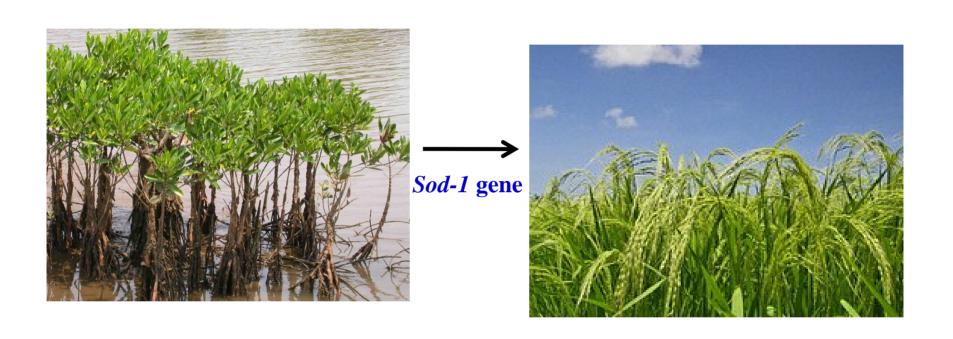
Delayed leaf senescence induces extreme drought tolerance in a flowering plant


Rosa M. Rivero*, Mikiko Kojima , Amira Gepstein , Hitoshi Sakakibara , Ron Mittler , Shimon Gepstein , Eduardo Blumwald*

Comparison between WT and transgenic P_{SARK} :: IPT_{2-36} and P_{SARK} :: IPT_{4-24} tobacco plants at optimal (1 liter/day) or restricted (0.3 liter/day) watering regimes. (A) Plants after 4 months of treatments. (B) Plant fresh weight at the end of the experiment. (C) Seed fresh weight at the end of the experiment. Asterisks indicate significant differences (P < 0.001) between the transgenic lines and WT. Values are the mean \pm SE (P = 1).

Salt Tolerant Canola

Source: Ed Blumwald, USA

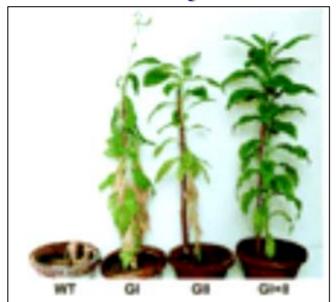

Abiotic Stress Tolerance: Indian Efforts

BIOPROSPECTING OF GENES AND ALLELE MINING

➤ Prospecting novel genes, promoters and alleles for economically important traits using indigenous bioresources

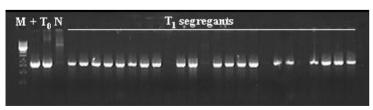
Transfer the validated genes and alleles to recipient species cutting across biological barriers

Salt Tolerant Rice

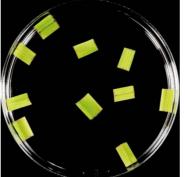


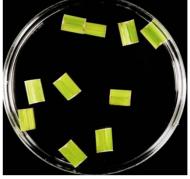
Tolerates 100 mM NaCl

Superoxide dismutase (Sod-1) gene from Mangrove plant (Avicennia marina)


Source: Ajay Parida, MSSRF

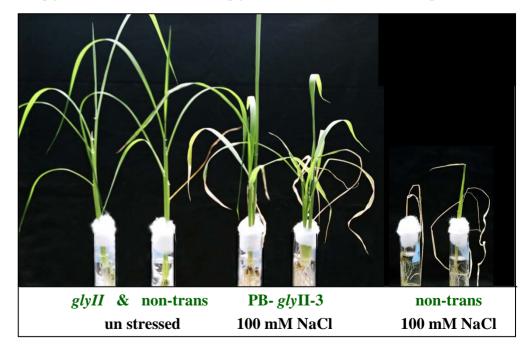
Genetic transformation of *Indica* Rice with *Glyoxalase* I and *Glyoxalase* II for Enhanced Salinity Tolerance




Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance S. L. Singla-Pareek, M. K. Reddy and S. K. Sopory*


PNAS 2003 vol. 100 no. 25, 14672-14677

Inheritance of glyll in T₁ transformants



PB1-glyI-1

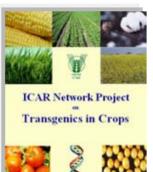
PB1-glyI-2

Non-transgenic PB1

Biolistic transformation of IR64 and PB1 using glyl and glyll

Source: Sudhir Sopory, ICGEB

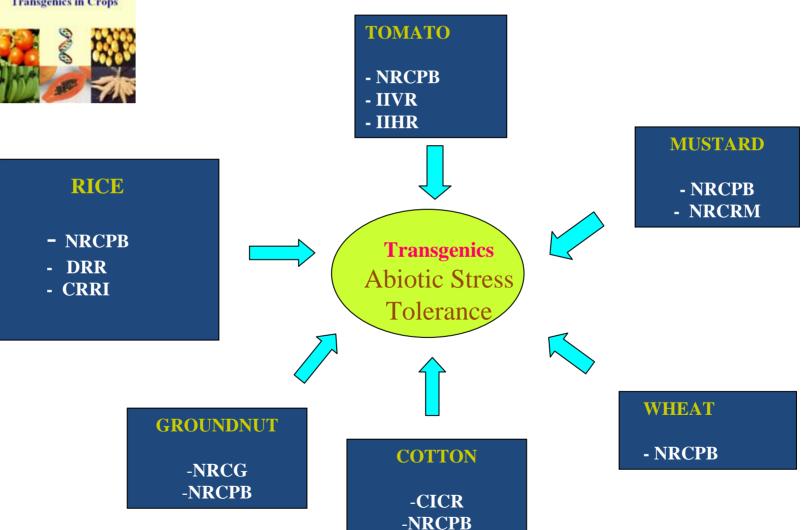
GENES FOR ABIOTIC STRESS TOLERANCE CLONED AT NRCPB (ICAR)


S. No.	Gene	Source	Accession #
1.	Late embryogenesis abundant protein 1a (<i>BjLEA1a</i>)	Brassica juncea	DQ166625
2	Late embryogenesis abundant protein 1a (BcLEA1a)	Brassica carinata	DQ166626
3	Late embryogenesis abundant protein 1b (BcLEA1b)	Brassica carinata	DQ166627
4	Late embryogenesis abundant protein 1a (BnLEA1a)	Brassica napus	DQ178982
5	Late embryogenesis abundant protein 1b (BnLEA1b)	Brassica napus	DQ178983
6	Late embryogenesis abundant protein (BcLEA1)	Brassica carinata	AY572959
7	Late embryogenesis abundant protein (BnLEA1)	Brassica napus	AY572958
8	Transcription factor, C-repeat DNA binding protein (<i>TaCBF2</i>)	Triticum aestivum	AY572831
9	Transcription factor, C-repeat DNA binding protein (<i>TaCBF3</i>)	Triticum aestivum	AY428036
10	AP2 transcription factor (SHN1)	Brassica carinata	DQ166624
11	C2H2 zinc finger 2 (ZF2) mRNA, partial	Brassica carinata	DQ166622
12	AP2 transcription factor (SHN1)	Brassica juncea	DQ166623
13	C2H2 zinc finger 2 (ZF2) mRNA, partial	Brassica napus	DQ178980
14	C2H2-type zinc finger protein (ZF1)	Brassica carinata	DQ166621
15	C2H2-type zinc finger protein (ZF1)	Brassica napus	DQ178981
16	LEA protein (SiLEA1)	Sisymbrium irio	AY950638
17	Protein-farnesyltransferase beta subunit (ERA1)	T. aestivum cv. C306	DQ858293
18	TatAPX - Thylakoid bound ascorbate peroxidase	T. aestivum cv. C306	

Abiotic Stress-inducible Promoters cloned at NRCPB (ICAR)

S. No.	Promoter	Source	Accession #
1	BcLEA1 - Late embryogenesis abundant protein	Brassica carinata	AY804188
2	BnLEA1 - Late embryogenesis abundant protein	Brassica napus	AY66378
3	BjLEA1 - Late embryogenesis abundant protein	Brassica juncea	AY940036
4	MYB 02	Rice cv N22	EU003972
5	MYB 04	Rice cv N22	EU003973
6.	Zeaxanthin epoxidase	Rice cv N22	EU007441

Crops that are being engineered with abiotic stress resistant trait


Crop	Abiotic Stress type			
Rice	Drought, Salinity			
Wheat	High temp., Drought, Salinity			
Sorghum	Drought			
Maize	Water logging, drought			
Chickpea	Drought, Cold tolerance			
Pigeon pea	Salinity, Drought			
Groundnut	Drought			
Sugarcane	Drought, Water logging			
Potato	Drought, High temperature, Salinity			
Mustard	Drought, Salinity			
Tomato	Drought, Salinity			
Cotton	Drought, Salinity			

ICAR Network on Transgenics in Crops

ABIOTIC STRESS TOLERANCE

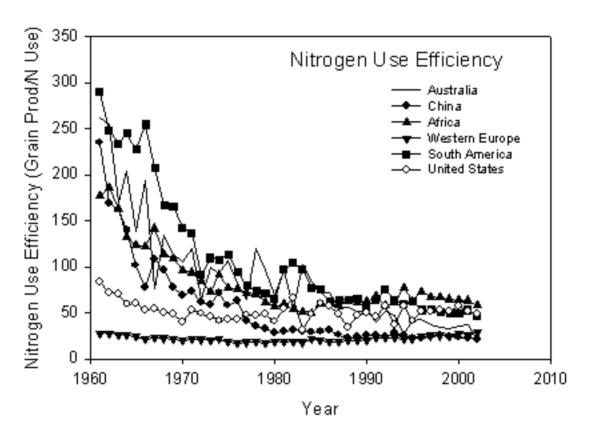
Coordinator: K C Bansal

Indo-US Agricultural Knowledge Initiative (AKI) Genetic Engineering for Abiotic Stress Tolerance in Crops

Rice Wheat Sugarcane Cotton

Gene/Promoter				
cDNAs				
Arabidopsis CBF3				
Brassica ZF1				
Arabidopsis AVP1				
Triticum aestivum thylakoid bound APX				
Oryza sativa LEA3-1/HVA1				
Arabidopsis HSP101				
Triticum aestivum SSS				
Triticum aestivum ADP gase				
Arabidopsis NHX1				
Arabidopsis AVP1				

Promoters


AtRD29A, OsMYB02, BcLEA1, TaHSP26 TaHSP16.9

Transgenic Crops undergoing Field Trials at the International Level

Transgenic Crop	Gene	Stress	Location	Organization
Soybean	NF-YB1	Drought	Argentina	Monsanto
Wheat	DREB	Drought	Mexico	CIMMYT
Rice	Stz	Drought & Salinity	Belgium	Crop Design
Rice	DREB1	Drought	Philippines	IRRI
Tomato	AtNHX1	Salinity	USA	Arcadia Bioscience

Nitrogen use efficiency is decreasing globally

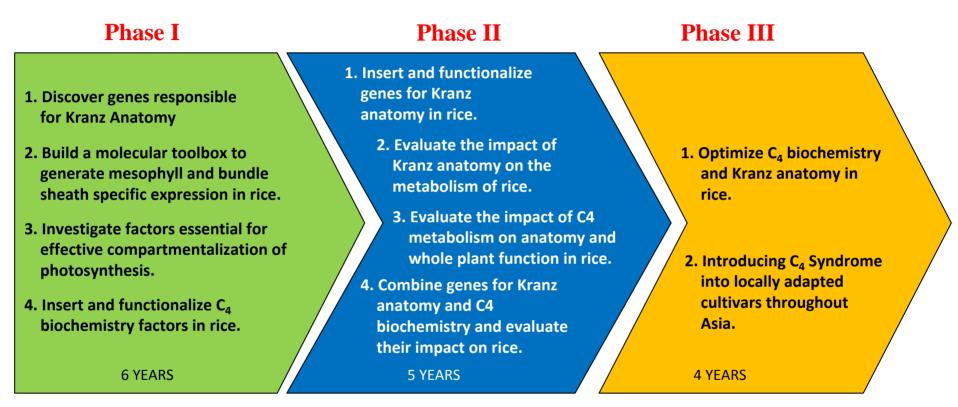
Nitrogen use efficiency for grain production relative to N fertilizer use for 1961-2002 for selected regions in the world.

Source: FAO, 2004

Improved N Use Efficiency in Maize through Genetic Engineering

A control leaf without the nitrogen stress transgene (left) compared to a leaf with the nitrogen stress transgene (right) from plants grown in a nitrogen stress environment.

Conversion of C3 Crops to C4: A global effort


Goal

Increasing crop productivity of wheat and rice by developing improved cultivars with a potential of capturing atmospheric CO_2 with far greater efficiency with less input of water and nitrogen using the modern tools of science

THE C4 RICE CONSORTIUM

George Bowes Florida	Thomas Brutnell Cornell	James Burnell James Cook	David Dawe FAO	Gerry Edwards Washington State	John Evans ANU
Julian Hibberd Cambridge	Peter Horton Sheffield	Xinguang Zhu Shanghai	Fritz Kreuzaler Aachen	Jane Langdale Oxford	Richard Leegood Sheffield
Peter Mitchell Sheffield	Erik Murchie Nottingham	Timothy Nelson Yale	John Raven Dundee	Rowan Sage Toronto	Susanne von Caemmerer ANU
Daniel Voytas Iowa	Peter Westhoff Dusseldorf	Christoph Peterhaensel Aachen	Udo Gowik Dusseldorf	Rice Science for a Better World International Rice Research Institute	

The Main C4 Rice Roadmap

1st three years of the Phase I funded by a Bill & Melinda Gates Foundation grant to IRRI and the C4 Consortium

Plant Science 172 (2007) 1204-1209

Enhanced photosynthesis rate in genetically engineered *indica* rice expressing *pepc* gene cloned from maize

A. Bandyopadhyay a,b,1, K. Datta a,b, J. Zhang c, W. Yang d, S. Raychaudhuri e, M. Miyao f, S.K. Datta a,*

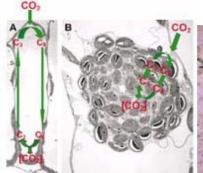

Fig. 1. Schematic diagram of the intact maize pepc gene and the selective antibiotic resistant gene hygromycin phosphotransferase (hph) used for rice transformation. The maize pepc gene is an 8.8 kb fragment containing all exons, introns and the promoter (from - 1212) and the terminator (2.5 kb) sequences. X = XbaI digestion site.

Fig. 2. Transgenic plants showing normal phenotype and good seed setting like control plants.

Towards Development of a Single Cell C4 Photosynthesis System in Rice

NAIP (ICAR)

Objectives

- ➤ Identification of new single cell C₄ photosynthesis system among the available chenopod species.
- ▶ Identification of genes involved in transition from C_3 to C_4 in single cell system and determination of cytoskeleton in single cell C_4 photosynthetic system.
- \triangleright Cloning and characterization of C₄ photosynthetic genes from a single cell C₄ photosynthetic species and a C₄ plant maize/sorghum.
- ➤ Transformation of rice and tobacco and/or *Arabidopsis* with C₄ pathway genes and the functional validation of the transgenics.

Thank You